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Abstract
An analogy is a comparison between two objects, or systems of objects, that highlights
respects in which they are thought to be similar. Analogical reasoning is any type of thinking
that relies upon an analogy. An analogical argument is an explicit representation of a form
of analogical reasoning that cites accepted similarities between two systems to support the
conclusion that some further similarity exists. Analogical reasoning is fundamental to human
thought and, arguably, to some nonhuman animals as well. Historically, analogical reasoning
has played an important, but sometimes mysterious, role in a wide range of problem-solving
contexts. The explicit use of analogical arguments, since antiquity, has been a distinctive
feature of scientific, philosophical and legal reasoning [1]. Our aim is to harness modern
Deep Learning techniques to make systems understand and generate analogies.

1 Introduction
In this new era of technological advancement, computer scientists are constantly trying to
build intelligent and aware systems. With the amount of data on the internet increasing
exponentially (doubling in size every 2 years), we need fast and efficient computation models
to effectively use that data for technological modernization. The amount of data combined
with the increased computation power these days have enabled Deep Learning to rise. To-
day many of the state of the art models are Deep Learning models. In the field of Natural
Language Processing, scientists have made significant progress in tasks like Question An-
swering Systems, Machine Translation, Language Generation. Language models have shown
a performance par to human level yet these models struggle to understand many defining
characteristics of human intelligence which includes analogical reasoning. In particular, gen-
eralizing beyond one’s experiences—a hallmark of human intelligence from infancy—remains
a formidable challenge for modern AI. We humans can understand and generate analogies
quite naturally. The task of analogy generation has two components. Given an input word
or sentence, understanding the context and then generating a corresponding analogy that
fits the context.

We develop a structured representation to realize the objective. We explore how using
relational inductive biases within deep learning architectures can facilitate learning about
entities, relations, and rules for composing them. We present a new building block for the
AI toolkit with a strong relational inductive bias — the graph network — which generalizes
and extends various approaches for neural networks that operate on graphs, and provides a
straightforward interface for manipulating structured knowledge and producing structured
behaviors. We discuss how graph networks can support relational reasoning, laying the
foundation for more sophisticated, interpretable, and flexible patterns of reasoning.
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2 Natural Language Processing
Natural language processing (NLP) is a theory-motivated range of computational techniques
for the automatic analysis and representation of human language. NLP research has evolved
from the era of punch cards and batch processing, in which the analysis of a sentence could
take up to 7 minutes, to the era of Google and the likes of it, in which millions of web pages
can be processed in less than a second.

Recent NLP research is now increasingly focusing on the use of new deep learning meth-
ods. In the last few years, neural networks based on dense vector representations have been
producing superior results on various NLP tasks. This trend is sparked by the success of
word embeddings and deep learning methods. Deep learning enables multi-level automatic
feature representation learning. In contrast, traditional machine learning based NLP systems
liaise heavily on hand-crafted features.

2.1 Distributed Representation of words
Learning distributed representation of words, sentences or paragraphs is motivated by the
notorious curse of dimensionality. The goals of distributed representation learning is to learn
a low dimensional representation of words.[2]
Word Embeddings - Distributional vectors or word embeddings essentially follow the dis-
tributional hypothesis, according to which words with similar meanings tend to occur in
similar context. The main advantage of distributional vectors is that they capture similarity
between words as depicted in the figure below. Thus, these embeddings have proven to be
efficient in capturing context similarity, analogies and due to its smaller dimensionality, are
fast and efficient in processing core NLP tasks.

Figure 1: Relationship between king, man, woman and queen embeddings

word2vec Word embeddings were revolutionized by Mikolov et al. [3] who proposed
the context bag of words (CBOW) and skip-gram models. CBOW computes the conditional
probability of a target word given the context words surrounding it across a window of size
k. On the other hand, the skip-gram model does the exact opposite of the CBOW model,
by predicting the surrounding context words given the central target word.
Contextualized Word Embeddings Traditional word embedding methods such asWord2Vec
and GloVe [4] consider all the sentences where a word is present in order to create a global
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Figure 2: The CBOW architecture predicts the current word based on the context, and the
Skip-gram predicts surrounding words given the current word

vector representation of that word. However, a word can have completely different senses
or meanings in the contexts. For example, let’s consider these two sentences - 1) “The bank
will not be accepting cash on Saturdays” and 2) “The river overflowed the bank.”. The word
senses of bank are different in these two sentences depending on its context.

The new class of models adopt this reasoning by diverging from the concept of global
word representations and proposing contextual word embeddings instead. Embedding from
Language Model (ELMo) [5] is one such method that provides deep contextual embeddings.
ELMo produces word embeddings for each context where the word is used, thus allowing
different representations for varying senses of the same word. Specifically, for N different
sentences where a word w is present, ELMo generates N different representations of w i.e.,
w1, w2, ..., wN .

2.2 Algorithms
Recurrent Neural Networks(RNNs) - RNNs use the idea of processing sequential infor-
mation. The term “recurrent” applies as they perform the same task over each instance of
the sequence such that the output is dependent on the previous computations and results.
RNN’s suitability for sequence modeling tasks lies in its ability to model variable length of
text, including very long sentences, paragraphs and even documents.

Figure 3: A recurrent neural network cell
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Long Short-Term Memory (LSTM) [6] - LSTM has additional “forget” gates over
the simple RNN. Its unique mechanism enables it to overcome both the vanishing and explod-
ing gradient problem. Unlike the vanilla RNN, LSTM allows the error to back-propagate
through an unlimited number of time steps. Consisting of three gates: input, forget and
output gates, it calculates the hidden state by taking a combination of these three gates.

Figure 4: Long Short Term Memory cell

2.3 Encoder-Decoder Network
Conditioned on textual or visual data, deep LSTMs have been shown to generate reasonable
task-specific text in tasks such as machine translation, image captioning, language generation
etc. In such cases, the RNN/LSTM is termed a decoder. A general deep LSTM encoder-
decoder framework that maps a sequence to another sequence. One LSTM is used to encode
the “source” sequence as a fixed-size vector, which can be text in the original language
(machine translation), the question to be answered (QA) or the message to be replied to
(dialogue systems). The vector is used as the initial state of another LSTM, named the
decoder. During inference, the decoder generates tokens one by one, while updating its
hidden state with the last generated token.

Figure 5: Sequence-to-Sequence model for Machine Translation

Attention Mechanisms [7] - One potential problem that the traditional encoder-decoder
framework faces is that the encoder at times is forced to encode information which might
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Figure 6: Attention Mechanism

not be fully relevant to the task at hand. The problem arises also if the input is long or very
information-rich and selective encoding is not possible.

This mechanism attempts to ease the above problems by allowing the decoder to refer
back to the input sequence. Specifically during decoding, in addition to the last hidden state
and generated token, the decoder is also conditioned on a “context” vector calculated based
on the input hidden state sequence.

Transformer (Parallelized Attention) [8] Both CNNs and RNNs have been crucial
in sequence transduction applications involving the encoder-decoder architecture. Attention-
based mechanisms, as described above, have further boosted the capabilities of these models.
However, one of the bottlenecks suffered by these architectures is the sequential processing at
the encoding step. The Transformer consists of stacked layers in both encoder and decoder
components. Each layer has two sub-layers comprising a multi-head attention layer followed
by a position-wise feed forward network.

Figure 7: Transformer Network
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2.4 Large Scale Pre-trained Language Models
Large-scale pre-trained language modes like OpenAI GPT [9] and BERT [11] have achieved
great performance on a variety of language tasks using generic model architectures. The idea
is similar to how ImageNet classification pre-training helps many vision tasks. Even better
than vision classification pre-training, this simple and powerful approach in NLP does not
require labeled data for pre-training, allowing us to experiment with increased training scale,
up to our very limit.

2.4.1 OpenAI GPT

Following the similar idea of ELMo, OpenAI GPT [10], short for Generative Pre-training
Transformer , expands the unsupervised language model to a much larger scale by training
on a giant collection of free text corpora. Despite of the similarity, GPT has two major
differences from ELMo.
• The model architectures are different: ELMo uses a shallow concatenation of inde-

pendently trained left-to-right and right-to-left multi-layer LSTMs, while GPT is a
multi-layer transformer decoder.

• The use of contextualized embeddings in downstream tasks are different: ELMo feeds
embeddings into models customized for specific tasks as additional features, while GPT
fine-tunes the same base model for all end tasks.

2.4.2 OpenAI GPT-2

The OpenAI GPT-2 [9] language model is a direct successor to GPT. GPT-2 has 1.5B
parameters, 10x more than the original GPT, and it achieves SOTA results on 7 out of 8
tested language modeling datasets in a zero-shot transfer setting without any task-specific
fine-tuning. The pre-training dataset contains 8 million Web pages collected by crawling
qualified outbound links from Reddit. Large improvements by OpenAI GPT-2 are specially
noticeable on small datasets and datasets used for measuring long-term dependency.

Parameters Layers dmodel

117 M (Small) 12 768
345 M (Medium) 24 1024
774 M (Large) 36 1280
1.5 B (XL) 48 1600

Table 1: Variants of GPT2

2.4.3 BERT

BERT, short for Bidirectional Encoder Representations from Transformers [11] is a
direct descendant to GPT: train a large language model on free text and then fine-tune on
specific tasks without customized network architectures.
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Compared to GPT, the largest difference and improvement of BERT is to make training
bi-directional. The model learns to predict both context on the left and right. The paper
according to the ablation study claimed that:

“bidirectional nature of our model is the single most important new contribution”
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3 Implementation
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4 Tools Used

4.1 Natural Language Toolkit (NLTK)
The Natural Language Toolkit [18], or more commonly NLTK, is a suite of libraries and
programs for symbolic and statistical natural language processing (NLP) for English written
in the Python programming language. NLTK is intended to support research and teaching
in NLP or closely related areas, including empirical linguistics, cognitive science, artificial
intelligence, information retrieval, and machine learning. NLTK has been used successfully
as a teaching tool, as an individual study tool, and as a platform for prototyping and building
research systems.

4.2 NumPy
NumPy [19] is the fundamental package needed for scientific computing with Python. This
package contains:

• a powerful N-dimensional array object

• sophisticated (broadcasting) functions

• basic linear algebra functions

• basic Fourier transforms

• sophisticated random number capabilities

• tools for integrating Fortran code

• tools for integrating C/C++ code

Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional
container of generic data. Arbitrary data types can be defined. This allows NumPy to
seamlessly and speedily integrate with a wide variety of databases.

4.3 Tensorflow
TensorFlow [20] is an interface for expressing machine learning algorithms and an imple-
mentation for executing such algorithms. A computation expressed using TensorFlow can
be executed with little or no change on a wide variety of heterogeneous systems, ranging
from mobile devices such as phones and tablets up to large-scale distributed systems of hun-
dreds of machines and thousands of computational devices such as GPU cards. The system
is flexible and can be used to express a wide variety of algorithms, including training and
inference algorithms for deep neural network models, and it has been used for conducting
research and for deploying machine learning systems into production across more than a
dozen areas of computer science and other fields, including speech recognition, computer
vision, robotics, information retrieval, natural language processing, geographic information
extraction, and computational drug discovery. This paper describes the TensorFlow interface

11



and an implementation of that interface that we have built at Google. The TensorFlow API
and a reference implementation were released as an open-source package under the Apache
2.0 license in November, 2015 and are available at www.tensorflow.org.

4.4 Keras
Keras [21] is a high-level neural networks API, written in Python and capable of running
on top of TensorFlow, CNTK, or Theano. It was developed with a focus on enabling fast
experimentation. Being able to go from idea to result with the least possible delay is key to
doing good research.

Use Keras if you need a deep learning library that:

• Allows for easy and fast prototyping (through user friendliness, modularity, and exten-
sibility).

• Supports both convolutional networks and recurrent networks, as well as combinations
of the two.

• Runs seamlessly on CPU and GPU.

5 Cognitive Phenomenon of Analogy
Analogy and Analogical Reasoning plays a crucial role in various cognitive science abilities
like reasoning, creativity and learning. They have been employed in a wide variety of settings,
and with considerable success, to possess problem solving techniques. According to Joseph
Priestley, a pioneer in chemistry and electricity,

“Analogy is our best guide in all philosophical investigations; and all discoveries, which
were not made by mere accident, have been made by the help of it.” [12]

While it seems improbable that all scientific discovery relies on Analogy but analogical
reasoning has provided a fruitful foundation in many fields. Analogy is an integral part of
human understanding and problem solving and thus has become an interesting challenge for
Artificial Intelligence [13]. For humans, developing analogies is quite natural, as our cognitive
process has extensive resources on context, history and experience. The real challenge is to
develop algorithms, that is computational models, to understand and generate analogies.

There is currently competition between two theories that lie at the intersection of com-
putational analogy and cognitive phenomenon of analogy:

5.1 Structure Mapping Theory (SMT)
Gentners’s theory on Structure Mapping [14] describes analogy as a hierarchical organiza-
tion. The basic assumption of SMT is that our psychological concepts have structure to it.
According to SMT, knowledge is represented as a propositional network of nodes and predi-
cates: (a) nodes represent the concept as whole, and b) predicates applied to nodes express
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propositions about the concepts. The analogy “A T is (like) a B”. B will be called the base,
since it is the domain that serves as a source of knowledge. Suppose that the representation
of the base domain B can be stated in terms of object nodes b1, b1, ..., bn and predicates such
as A, R, R′, and that the target domain has object nodes t1, t2, ..., tm The analogy maps the
object nodes of B onto the object nodes of T:

M : bi → ti

Gentner [14] have set out to empirically test the explanatory power of this conception with
respect to human analogical production. SMT has two key strengths: 1) it makes a clean dis-
tinction between analogies and other types of similarity comparisons (abstraction, anomaly,
literal similarity, and mere appearance), both in theory and as evidenced in psychological
examination; and 2) it is generally applicable — rather than requiring a specific algorithm
for each potential analogy, or even a collection of algorithms for each domain of comparison,
the generalized structure of knowledge representation and the structure-mapping algorithm
makes it possible for any properly constructed knowledge structure to be compared and
considered for structure-mapping.

5.2 High-level Perception (HLP)
Douglas Hofstadter [15] propose a different approach to the explanation of analogy by which
an analogy is conceived of as the product of a more general cognitive function called high-
level perception. HLP is the process by which an organism’s representation of a situation
at a conceptual level is constructed based on an interaction between high-level concepts and
low-level perceptual processes: high-level concepts influence low-level perceptual processing,
while what is perceived at a low level affects the activation of high-level concepts as a
representation of the situation is constructed.

According to Hofstader, [15] there are two ways to represent structure of cognitive process:

• long-term knowledge representations that are stored passively somewhere in the system.

• short-term representations that are active at a given moment in a particular mental or
computational process.

Difference between SMP and HLP? [16]
Structure-mapping seeks a “horizontal” view of analogy where the phenomena is examined
at the level of already existing psychological representations, and where the task is to identify
what processes are common to all or most analogy function; High-level Perception, on the
other hand, seeks a “vertical” view of analogy in which the goal is to explain the processes
that make up the construction of representations. An integrated theory of analogy should
encompass both horizontal and vertical views.
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6 Proposed Approach
Incorporating human knowledge is one of the research directions of artificial intelligence
(AI). Knowledge representation and reasoning, inspired by human’s problem solving, is to
represent knowledge for intelligent systems to gain the ability to solve complex tasks.

6.1 Knowledge Graph
Recently, knowledge graphs as a form of structured human knowledge have drawn great
research attention from both the academia and the industry. A Knowledge Graph is a multi-
relational graph composed of entities (nodes) and relations (different types of edges) [17].
Each edge is represented as a triple of the form head, relation, tail) or (subject, predicate,
object), also called a fact, indicating that two entities are connected by a specific relation,
e.g., (Albert Einstein, WinnerOf, Nobel Prize). Although effective in representing structured
data, the underlying symbolic nature of such triples usually makes Knowledge Graphs hard
to manipulate.

Figure 8: Commutative diagram for the analogy between the Solar System (red) and the
Rutherford-Bohr Model (blue)

6.1.1 Underlying Principle

• To develop a dependency graph between the different part of the sentence.

• Learn the representation of the graph for interpretability.

• Use the learn’t representation to develop a language model for analogical reasoning.
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7 Future Work
We intend to develop a novel framework for explicitly modeling analogical reasoning on
knowledge graph to instill computers with narrative intelligence — the ability to craft, tell
and understand analogies. This framework will allow the computers to understand and learn
local as well as global context by developing a hierarchical structure and thereby solving the
task of analogical reasoning.
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